HF performance and physics studies

lorh

QGP at Primary Vertex

b-quark
Distance

Xin Dong (LBNL)
Jin Huang (BNL)

Uniqueness of Heavy Quarks in QCD

HF-topical group

- HF in sPHENIX: in particular B-meson and b-jets, provide differentiating sensitivity to collision VS radiative energy loss, access to HQ transport parameter of QGP, total cross section. Bring results to precision era.
 - ∘ 0<p_T<15 GeV/c B-meson: access down to zero pT, max sensitivity to HQ mass effect
 - ∘ p_T>15 GeV/c b-Jet: less dependence on FF complication, probing parton kinematics and higher p_T-scale
- High priority task are set to develop and simulate performance for coming MVTX reviews and proposals, expanding the program in HF-jet and HF-meson programs

Communication:

- Discussion email list: https://lists.bnl.gov/mailman/listinfo/sphenix-hf-jets-l
- Wiki page under construction: https://wiki.bnl.gov/sPHENIX/index.php/Heavy Flavor Topical Group

Meetings/Events

- Use weekly simulation meetings for updates, https://indico.bnl.gov/categoryDisplay.py?categId=88
- Monthly TG meetings: https://indico.bnl.gov/categoryDisplay.py?categId=151
- Goal oriented irregular events:

MVTX brainstorming meeting, Mar 8 / MAPS+HF-jet joint workfests, e.g. Jan 5-7 2017 @ Santa Fe / Precollaboration meeting work-fest on May 16-17, 2016 / Initial TG meeting on Apr 22, 2016

Jet flavor definition and projection

- Unifying truth definition and jet sample generations, based on Dennis' work defining a truth tagging module run on MB events to synchronize B-jet definition and yield between analyzers
- PYTHIA8 Hard QCD + CTEQ6L simulation as baseline, motivated by check with LHC/FONNL/RHIC data Need to cross check with NLO generators
- Two options provided in defining truth jet by matching b-quark in jet (Default, CMS definition) or by matching B-hadron in jet (proposal definition)
- Assuming **jet-triggered** |z|<10cm AuAu luminosity of 550B MB col. in 5-year run plan [Jamie's talk]
- Available on GitHub: https://github.com/sPHENIX-Collaboration/analysis/tree/master/HF-Jet/TruthGeneration

b-jet theory updates for sPHENIX

Cesar da Silva (LANL) working with Ivan Vitev's group updating pQCD calculation of [Phys.Lett. B726 (2013) 251-256] to sPHENIX kinematics

Hunt for b-jet in sPHENIX

Strong connection to tracking dev.

- Many appreciation of the hard work of tracking team [see Tony's talk]
- Strong connection in analyzers and tracking developers
- Focus from HF topical group:
 - Efficiency down to ~1 GeV/c
 - multi-track displaced vertex
 - Low fake DCA tail
 - rare signal of HF decay
 - DCA resolution
 - differentiate of HF decay

Important factors in b-jet tagging

Past activities:

b-jet tagging - High DCA track counting

Short history

- Dennis and Haiwang implemented track counting tagger in the full Geant4 simulation
- Haiwang produced projection plot in Geant4 simulation.
- Systematically validating the Geant4-based track fit procedure, in order to optimize 3-D DCA and likelihood
- Reevaluate in HI background with HIJING embedding

Use new tracking simulation and pattern recognition

Fast sim in sPHENIX Proposal

b-jet purity Pythia8 p+p 200 GeV PYTHIA p+p 200 GeV 0.9⊨ $Jet p_{_{T}} = 20 \text{ GeV}$ Truth Jet, $p_{+} > 20 \text{ GeV}$ 0.8 sPHENIX GEANT4 tracking MAPS+IT+TPC sPHENIX Large Large DCA methods: DCA Methods one track cut two track cut **Analysis Region** three track cut CMS results 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 b-jet efficiency

Full Geant4 Sim: p+p

one track cut

two track cut

three track cut

Jin & Xin

b-jet efficiency

From Haiwang's talk

https://indico.bnl.gov/conferenceDisplay.py?confld=1926

b-jet purity

Past activities:

b-jet tagging – Secondary vertex

- Short history
 - Haiwang developed new Kalman filter (GenFit2) with vertex finder integration (RAVE)
 - Sanghoon implemented Secondary vertex finder in jet
 - p+p performance plot used in tracking review
- Next:
 - Use new tracking simulation and pattern recognition

Secondary vertex *b*-tagger

From Sanghoon's talk https://indico.bnl.gov/conferenceDisplay.py?confld=1928

Secondary vertex kinematics fits Data driven *b*-jet purity estimation

An vulnerability (opportunity) of HF-probes

b-quark jet selection:b-jet correlation

- Event topology to select b-quark jet
 - b-jet in correlation with opposite-going B-hadron, b-jet and photon
- sPHENIX provides good acceptance on b-di-jet and b-jet – non-prompt-D correlations
- Helps on purity of jet and b-tagging too

b-jet + B-hadron, model

b di-jet, CMS 2016

di-jet acceptance in sPHENIX

lorh

Di-b-jet asymmetry: sPHENIX projection

CMS-HIN-16-005

0.3

On-going sPHENIX projection

- By Darren McGlinchey (UCB)
- Pythia8 (HardQCDBBar)
- Fast sim. (truth jets)
- Assuming di-b-jet tagging perf.
 - Efficiency 50%
 - High purity (100%)
- $R_{\Delta\Delta} = 0.6$ assumed
- sPHENIX proposal lumi. (100B MB)
 - For p + p use integrated luminosity of $\int \mathcal{L}_{pp} dt = 175 \text{ pb}^{-1}$
 - For 0-10% Au+Au use n+n equivilent luminosity of $\int \mathcal{L}_{nn} dt = N_{\text{evit}}^{\text{Au}} * \langle N_{\text{coll}} \rangle / \sigma_{nn} = 10 \text{B} \times 962/42 \text{mb} = 229 \text{ pb}^{-1}$

Hadron – b-jet balance

- Xuan Li (LANL) also started investigation of correlation of b-jet in correlation of a non-prompt D_0 -meson (\rightarrow pi + K)
- Goal: tag initial quark energy + vector for non-prompt D measurements, probe b-quark energy loss and fragmentation; access to lower z_j cut-off comparing to di-b-jets correlation; help purity of b-quark-jet tagging

Updates in simulation meetings:

https://indico.bnl.gov/conferenceDisplay.py?confld=2684

Hadron – b-jet balance: Angular correlations

- Xuan Li (LANL) also started investigation of correlation of b-jet in correlation of a non-prompt D_0 -meson (\rightarrow pi + K)
- Goal: tag initial quark energy + vector for non-prompt D measurements, probe b-quark energy loss and fragmentation; access to lower z_j cut-off comparing to di-b-jets correlation; help purity of b-quark-jet tagging

Updates in simulation meetings:

https://indico.bnl.gov/conferenceDisplay.py?confld=2684

(Not observed)

Correlation between B and b jet

Transport model calculations (D-meson)

S.S.Cao et al, PRC 92 (2015) 054905

(Observable)

Correlation between $K\pi$ pair and b jet

Pythia distribution scaled to stat. of 40B 0-10% Au+Au events, $Eff_{let} = 0.5$, $Eff_{D} = 0.6$

Lower p_T and stronger mass effect

- B-mesons, how does sPHENIX contribute?

 $R_{AA}(J/\psi_B) > R_{AA}(c\text{-eloss})$ $R_{AA}(e_B) > R_{AA}(e_{D+B})$ @ LHC

 $R_{AA}(e_B) > R_{AA}(e_D)$ @ RHIC

60%

First approaches:

- Golden channel is decay + topological reconstruction of non-prompt D⁰, complemented by exclusive channels
- Accessing energy loss via R_{CP}, avoiding triggering req. in pp
- Flow of b-quark via non-prompt D flow, clean access to medium transport than charmed mesons

R_{AA} (0-10%)

Tagging B-mesons with Non-Prompt D⁰

- Impact parameter (DCA) method to tag non-prompt D0 from Bmeson decays
- Simulation Single track efficiency and DCA distributions from full Hijing + GEANT simulations
- Setup Fast simulation with Hijing+GEANT tracking performance
- ▶ These fed into a fast Monte Carlo package to generate the distributions for signals (prompt and non-prompt D⁰) as well as combinatorial background

Physics Performance via Non-Prompt D⁰

- 1) Nuclear modification factor $R_{CP}(R_{AA})$ up to ~10 GeV/c
 - to precisely study the mass hierarchy of parton energy loss
- 2) Elliptic flow (v_2) up to ~8 GeV
 - to precisely determine the bottom quark collectivity, therefore to constrain diffusion coefficient D_{HO}

Recent: Exclusive B-meson Reconstruction

- Exclusive B⁺ reco with K π π final states
- Topological cuts optimized via TMVA BDT method
- A reasonable measurement of B⁺ hadrons via exclusive decay channel in 1-8 GeV/c
- Complementary and systematic control

Broader HF meson Physics Program: Λ_c and HQ Correlations

<u>High statistics Λ_c measurements</u>

 Λ_c/D^0 enhancement sensitive to - charm quark hadronization, thermalization, domains in sQGP etc.

Heavy quark correlations

- More sensitivity to HQ-medium interaction, thus better determination of ΔE mechanisms and $\textbf{\textit{D}}_{HO}$
- LHC vs. RHIC different initial pair correlation/medium dynamics

Lee et al, PRL 100 (2008) 222301 Ghosh et al, PRD 90 (2014) 054018 STAR, QM17

Zhu et al, PRL 100 (2008) 152301

Summary and plans

Summary 1: technical performances:

- Realistic implementation in Geant4
 - Completed: implement ladder structure in simulation Tony F., Gaku M.
 - Completed: digitization of MAPS detector Tony F.
 - On-going: Update tracking performance plots for MAPS, DCA and dp/p resolutiosn Tony F.
 - By summer (?): complete the pile-up simulation framework Mike M., Yorito Y.
- b-jet tagging algorithm
 - By summer, help needed: Investigating full-detector fast simulation for b-jet simulation. Look into general packages e.g. <u>DELPHES</u>.
 - On-going, developing: It will be very useful to use new in-development pattern recognition software to bring back hit collection efficiency.
 - **By summer**: Full calorimetry simulation with secondary vertexing tagger Sanghoon L.
 - **By summer**: Full calorimetry simulation with high-DCA track counting Haiwang Y.

Summary 2: Physics performances

Differential sensitivity of energy loss mechanism and accessing QGP transportation properties

- Update non-prompt D meson performance projection
 - Completed: update the Rcp and v2 plot with more realistic simulations for MB and peripheral collisions Xin D., Xiaolong C.
- Explore complimentary B-hadron channels beyond non-prompt-D
 - Completed: exclusive B->D pi Xin D., Xiaolong C.
 - By summer, help needed: B->non-prompt J/Psi->e+/e- and p+p triggering
- Inclusive b-jet R_{AA}
 - On-going, first results: Update theory curve to RHIC energy Cesar da S. working with Vitev group
 - Completed : Update R_{AA} plot
- di-b-jet asymmetry
 - On-going: Extract di-jet purity from Geant4 simulation Haiwang Y.
 - Deliverable: Apply di-jet purity to projection Darren M., Haiwang Y.
- b-jet-non-prompt-D asymmetry:
 - On-going: Produce uncertainty projection in fast simulation Xuan L.

Additional study wish list Help (always) wanted

- **HF-hadron chemistry:** e.g. high stat. Λ_c , to study HQ hadronization
- ▶ **HF-meson correlations**, e.g. D-D_bar azimuthal correlations, to enhance sensitivity to HQ-medium interaction; enhance M/pT ratio scale comparing to D-b-jet correlation.
- Explore b-jet substructure tools:
 - Exercise jet-grooming algorithm, FF. in collaboration with Jet Structure group
 - Tagging gluon splitting via multi-decay vertex in inclusive b-jets.
- Explore Charmed-quark jet:
 - charm fragmentation, completes mass hierarchy. Select D meson formed late in formation
 - Try out prompt-D tagger (ALI-PREL-117896) and Corrected Secondary vertex (arXiv:1612.08972).
 (Sanghoon/Xuan expressed interests)
- Explore tagged D-meson in correlation with opposite hard structure
 - Tagging initial c-quark kinematics with correlations, including D-meson jet correlation and D-meson photon correlation
 - Study D-FF and formation of D-meson
- Further b-jet tagging developments
 - Try different strategy: Soft-lepton tagging
 - Optimize analysis methods: likelihood analysis and machine learning tool
- Triggering of B-mesons in p+p collisions
 - B->J/Psi ->e+/e-, EMCal trigger. Exploration work by Sasha L.
 - D meson calorimetry trigger, turn on.
 - Large DCA triggers?

Extra Information

Particle Identification with TOF

10cm gap between TPC and EMCAL - TOF

Jan. 5-7, 2017

TOF PID requirement:

$$M = p\sqrt{\left(\frac{ct}{L}\right)^2 - 1}$$

$$\frac{\Delta M}{M} = \frac{\Delta p}{p} \oplus \gamma^2 \left[\frac{\Delta L}{L} \oplus \frac{\Delta t}{t}\right] \sim \gamma^2 \frac{\Delta t}{t}$$

STAR TOF:

Radius ~ 2.15 m, σ_t ~ 65 ps

sPHENIX TOF

(to have the same PID capability) Radius ~ 0.85 m, $\sigma_t \sim 25$ ps

Candidate: Many-gap MRPC

10

Signal and Bg. pT

- Hybrid PID: use TOF when TOF is avaliable at pT<1.6
 Clean PID: Must use TOF at pT<1.6
- TOF eff. is from STAR Run14

B+, cross section, modification

B+ signal to backgroud

BDT inputs

Key dates and events

- Soon-ish (in a week): sPHENIX nominal run plan and update all statistical projections. Expect 200B MB Au+Au in 5-year run plan
- End-May: new tracking software (see Haiwang's talk)
- June: submission of analysis notes (next slides)
- ▶ Jun 12: pre-collaboration meeting @ BNL ← please attend
 - Encourage HF TG participation in the work-day @ BNL
 - Focusing on using the new tracking software for HF simulations
- ▶ Jun 13-14: sPHENIX collaboration meeting @ BNL
- Jun 15-16: RHIC PAC meeting
- Jun 19: sPHENIX-charged MVTX Director's review dry-run (see Ming/Xuan's talk)
- ▶ Jul 10-11: sPHENIX MVTX Director's review (see Ming/Xuan's talk)
 - Major review on both science case and detector cost/schedule
- Later summer: MVTX proposal submission to DOE
- Expect DOE review later in 2017 or early 2018

Delivered plots – HF-jet for Feb-2017 MAPS pre-proposal

Jin & Xin

B-jet tagging in p+p

B-jet tagging in 10%C Au+Au

Path forward: summary

- Apr review/preproposal: Solidifying results and studies started preparing for thesFeb-2017 pre-proposal
- Summer review/full proposal:
 - Expansion of selected topics: more realistic simulation, exclusive Bmeson reconstruction
 - Addressing BNL-charged review comments
 - Many more HF capabilities need your help to develop
- Expect workfest around time of May collaboration meeting

More ideas on *b*-quark jet selection? Jet structure tools

- Jet structure tool developed in HEP adapted in HI field
- ▶ Jet grooming observable z_g to separate b-quark jet and $g/q \rightarrow b\bar{b}$ jet?
- Mid-term goals: in collaborate with JS TG in developing grooming tools – volunteer welcomed!

Detector requirement on MAPS/MVTX

- Caveats: there are trade-offs between tail/efficiency/DCA. Important final check is b-jet tagging performance working point: reaching 40% efficiency and 40% purity.
- Low fake high-DCA tail background
 - b-jets are rare (0.1%-1%) object identified via displaced vertex, therefore sensitive to rare large-DCA fake track background.
 - The working point of B-jet tagger is few-sigma above DCA peak, and
 - Possible specification: true large DCA track/fake large DCA track > 1:1 1:few for DCA tail integrated from 2-sigma to 1mm
- Tracking efficiency
 - Efficiency for multi-track tagging algorithm is sensitive to (tracking efficiency)^N
 - Possible specification: Require 60% (HFT KPP) 75% (HFT UPP) single track efficiency p_T>1 GeV/c

DCA

- B-jet DCA requirement is relatively moderate
- Requirement: DCA<100 um @ p_T>4 GeV/c (sPHENIX proposal)
- DAQ output event rate
 - Statistical limited measurement
 - B-jets are jet-structure study based on inclusive jets, require large jetsample rate
 - Requirement: 15 kHz trigger rate to match sPHENIX DAQ

Jet finding and fake rejections

- HF-jet are based on jet, relying on jet finding development lead by JS TG
 - Emphasis on purity and reach to lowest-possible-p_⊤ jet, where mass effect is maximized
 - No statistics for *b*-jet beyond $p_T > 50 \text{ GeV/c}$
- HF-jet specific: response in detector for b-favored jet, unfolding and media modification
 - Require join study with JS TG in term of experience and toolkit developments

